
Learning to Balance

A Reaction-Wheel Unicycle Robot

Tristan Lee

Kyle Mackenzie

Simon Ghyselincks

Jackson Fraser

Julian Lapenna

ENPH 459 — Project #2411

The University of British Columbia

Vancouver, BC, Canada

April 14th 2021

Executive Summary

This two-year capstone project, sponsored by the UBC Engineering Physics Project Lab, combines

robotics, control engineering, and machine learning to develop a self-balancing unicycle robot using a

Reinforcement Learning (RL) algorithm.

Previous work includes capstones that built a self-balancing robot using classical control and a single-axis

inverted pendulum managed with RL. Additionally, the Max Planck Institute’s Wheelbot project [3], a

compact self-balancing robot, has provided significant guidance and inspiration. Our goal is to enhance

the Wheelbot by incorporating RL control and point-to-point navigation.

Currently, our efforts have produced a reaction wheel inverted pendulum (RWIP) to understand the

unstable roll axis dynamics of the full robot. This RWIP is part of our prototyping pipeline, streamlining

testing of classical and RL algorithms, along with system integration including actuators, sensors, and

computational demands. We implemented both a traditional Proportional-Integral-Derivative controller

(PID) as well as an RL controller and found the latter to be more effective, though aggressive in its

response to disturbances.

Moving forward, we recommend promptly building a physical prototype and setting up comprehensive

telemetry and data visualization to optimize testing and design iterations. In the project’s second year,

we will finalize the full robot’s design, refine our control architecture with a state-space model for more

sophisticated controllers, and develop the navigation system.

1

Contents

1 Introduction 5

1.1 Background . 5

1.2 Previous Work . 5

1.3 Requirements . 5

2 System Overview 6

3 Project Development Overview 7

4 Robot Design 8

4.1 System Dynamics Overview . 8

4.2 System Dynamics Design Motivation . 10

4.3 Hardware Design . 13

4.3.1 Self-Righting Capabilities . 13

4.3.2 Powering The System . 13

4.3.3 Actuators . 13

4.3.3.1 Motors . 14

4.3.3.2 Moteus Drivers . 14

4.3.3.3 Flywheel . 14

4.4 Computer and Software Systems . 15

4.4.1 Actuator Control Interface . 15

4.4.2 Inertial Measurement Unit . 15

4.4.3 Server and Telemetry . 16

4.5 Software Architecture . 16

4.6 Control Algorithms . 18

4.6.1 Classical Controls . 18

4.6.2 RL Controls . 19

4.6.3 RWIP Reinforcement Learning Control . 20

5 Current Progress 21

6 Conclusions 22

7 Future Development and Recommendations 23

8 Deliverables 25

Appendix A 26

2

Appendix B 36

Appendix C 44

Appendix D 51

3

List of Figures

1 Resting position of robot. 6

2 Labelled robot CAD design. 6

3 RWIP (Reaction Wheel Inverted Pendulum) prototype models the roll dynamics. 7

4 Flow chart of the RL Unicycle development process to date. 8

5 Diagram showing gyroscopic precession . 9

6 Principal axes of control. 9

7 A reaction wheel pendulum roll axis and rolling inverted pendulum pitch axis model. . . 10

8 Center of mass shown as a design parameter. 11

9 Broom balancing problem. 11

10 Yaw axis simulation and design specifications. 12

11 A cutaway view of the yaw wheel compartment. 12

12 Side, angled and back view of the actuators. 14

13 Computational system map. 15

14 Project file structure tree diagram. 17

15 100Hz control cycle diagram. 17

16 Reaction wheel inverted pendulum diagram. 18

17 Detailed flow chart of robot state control loop. 19

18 Reinforcement Learning straining loop diagram. Source: Deep Reinforcement Learning

for Constrained Field Development Optimization in Subsurface Two-phase Flow 19

19 Accelerated reinforcement learning training loop showing forward pass interactions and

backward pass optimizations Source: https://blogs.nvidia.com/blog/deep-reinforcement-

learning-gpus-robotics/ . 20

20 RWIP front, side and back view. Final robot draft chassis. 22

21 Project flowchart from proposal. 23

22 Project flowchart for 2024-2025 . 24

4

1 Introduction

1.1 Background

Robotics engineering and control theory are integral to modern automation, involving the design of

robots and applying mathematical principles to their operations. Advances in machine learning have

revolutionized these fields with the development of adaptive controllers that learn from their environment

and interactions, enhancing robotic capabilities and applications.

Robotics often deals with complex dynamics that are difficult to model precisely. While traditional

control systems offer reliability, they may struggle with unpredictable conditions. Reinforcement learning

allows robots to adapt through trial and error, improving decision-making in dynamic environments and

enabling complex tasks that might otherwise be considered too challenging or impractical, such as

managing self-balancing unicycle robots.

1.2 Previous Work

Our capstone project aims to create a self-balancing unicycle robot, leveraging an RL control algo-

rithm. This involves integrating control theory with both conventional and machine learning-based

controllers, alongside hardware and software development, to achieve autonomous balance, automatic

upright recovery, and point-to-point navigation. Our project builds upon capstone team 1868’s clas-

sically controlled unicycle robot [1], team 2153’s RL-controlled inverted pendulum [6], and the Max

Planck Institute’s Wheelbot project [3], which developed a more advanced self-balancing unicycle with

self-righting capabilities.

1.3 Requirements

The requirements for our robot are as follows:

1. Balance by staying upright within of vertical for 10 minutes continuously.

2. Stand up by entering balancing status from a rest position of 25◦ from vertical in 0.5 seconds.

3. Navigate freely inside a circle of radius 1m to within 2cm of the destination.

The angles are measured from vertical to the axis through the robot’s center of mass (CoM) and the

point of rotation. Figure 1 shows a front and side view of the robot in resting positions.

Additionally, a development goal made aside from the final deliverable was to achieve a working proto-

type robot that can balance with a single degree of freedom using both a classical and RL controller.

Specifically, it should be an inverted pendulum so that the design will extend to the second phase of

the project in year 2.

5

(a) Front view, the point of rotation is
the joint of the bottom wheel.

(b) Side view, the point of rotation is
the contact point with the ground.

Figure 1: Resting position of robot.

2 System Overview

The robot is composed of two reaction wheels, a single drive wheel, a controller, and a battery, all

mounted on a 3D printed PLA frame. It has a total height of 30cm and a weight of 1.25kg, incorporating

a compact and efficient design intended to allow self-erection from a position resting on its resetting legs.

The Jetson Nano acts as an autonomous controller that reads the sensors and reacts to the environment

using the motors.

Figure 2: Labelled robot CAD design.

6

Much like a unicycle, it balances on one wheel, with side-to-side stability provided by the roll wheel

and direction controlled by a yaw wheel. The mechanism of balancing and steering relies on a reaction

torque produced by spinning the reaction wheels. When a motor applies torque to one of the flywheels,

an equal and opposite torque acts on the robot’s body, with the net effect altering the angular motion

of both the wheel and the robot.

The unstable axes are roll and pitch, where tipping occurs, Section 4.1 provides a detailed breakdown

of the physics.

3 Project Development Overview

The project’s progression is divided into six iterative stages, all contributing to a roll wheel inverted

pendulum (RWIP) prototype. This prototype serves as a benchmark to assess our roll dynamics model,

and test control algorithms, sensors, and actuators. These stages are:

1. System dynamics research

2. Hardware design

3. Software architecture

4. Sensor and actuator interfacing

5. Control model construction

6. Integration and testing

Figure 3: RWIP (Reaction Wheel Inverted Pendulum) prototype models the roll dynamics.

7

The first stage produced the project proposal, with subsequent stages focusing on development. The

prototype streamlines the development pipeline for next year, facilitating faster iteration for the complete

robot.

Figure 4: Flow chart of the RL Unicycle development process to date.

We achieved a completed RWIP robot and will cover the development, results and major considerations

of the design in each stage. Our process flow chart is shown in Figure 4. We aim to follow a similar

progression next year for the complete robot.

4 Robot Design

4.1 System Dynamics Overview

The design and control of our robot begin with an understanding of the fundamental physics and

system dynamics governing its movement. The distribution of mass, total mass, and the interaction of

the moving parts of the robot are important for a robust design.

The robot balances based on Newton’s third law of motion, where for every action (torque), there is

an equal and opposite reaction. This follows from the rotation form of Newton’s second law τ = Iα,

indicating that angular acceleration is directly proportional to applied torque. Thus, when a motor

applies torque to spin a flywheel, an equal and opposite torque acts on the robot’s body. Calculating

the appropriate torque for each axis allows the robot to maneuver into a stable state.

The reaction wheels and drive wheel of the robot create a motion that can be unintuitive due to

gyroscopic precession, a consequence of the conservation of angular momentum. An illustration of the

effect is shown in Figure 5.

8

Figure 5: Diagram showing gyroscopic precession

When a wheel is spinning with a speed of ω, and a torque or force F is applied to it, the wheel will not

only rotate in the expected direction of force, but will also produce a sideways twisting motion (shown

in orange above), described in more detail in [2].

Motor inputs in one wheel can interact with another wheel’s spin, disturbing the robot’s intended

motion. This interaction can be minimized by maintaining low wheel speeds and arranging the rotation

axes orthogonally to each other, as shown in Figure 6.

Figure 6: Principal axes of control.

In this setup, coupling occurs only through gyroscopic precession rather than direct control inputs.

Additionally, by keeping the yaw wheel stationary except during turns, most gyroscopic effects arise

from interactions between the pitch and roll wheels, creating yaw precession. In an upright state with

no yaw wheel spin, the roll and pitch axes are fully decoupled from each other [3].

The yaw axis remains stable due to friction, whereas the roll and pitch axes are inherently unstable and

pose greater control challenges. These axes can be treated as separate control problems, allowing for

9

Figure 7: A reaction wheel pendulum roll axis and rolling inverted pendulum pitch axis model.

targeted solutions and effective decoupling, following strategies from previous projects [1].

4.2 System Dynamics Design Motivation

The moment of inertia informs the torque requirements for the robot to be able to self-right and balance.

The total mass and its distribution are what determine the moment, with a greater cost associated with

higher mass located further from the center of mass. The highest mounted item is the roll axis wheel and

motor, where a high torque to mass ratio is desired to minimize this effect. The Wheelbot [3] identified

self-righting as the limiting design factor so we used a numerical simulation of this procedure to de-risk

our torque requirements and ensure that the final robot can self-right. The reasoning is that if the robot

can accomplish this task then it will exceed the torque requirements for other system dynamics.

A center of mass that is 100-300mm in height optimizes controllability, based on early simulations of the

model. The tradeoff is between a system that requires less effort to balance but that is less responsive

(higher COM and inertia) versus a higher effort, more responsive system (lower COM and inertia), much

like balancing a broom that is upright versus upside down.

10

Figure 8: Center of mass shown as a design parameter.

Figure 9: Broom balancing problem.

The yaw axis is controlled by a reaction wheel but the mechanism is entirely different since gravity is

not a destabilizing force. To execute turns a yaw flywheel is spun to create a reaction torque spinning

the robot about the ground contact point. The friction with the ground is used to stabilize the motion

or any residual build up of speed in the wheel.

11

Figure 10: Yaw axis simulation and design specifications.

We also consider the impact of the flywheel used to create a reaction torque. Once a flywheel reaches

maximum speed, it can no longer provide any reaction torque. An ideal flywheel has a high moment of

inertia to resist accelerations, but at the cost of increasing the overall mass of the robot.

Figure 11: A cutaway view of the yaw wheel compartment.

Our design places the flywheel mass as far from the center of rotation as possible, with most of the

robot height dedicated to flywheel diameter. To minimize design risk, our approach closely follows that

of the Wheelbot with proven performance.

Finally, the full robot will have a fourth degree of control, translation through the environment which

is managed by a combination of inputs from all the control axes. Once the robot is able to balance

12

upright, introducing a slight bias to lean forward or back will trigger acceleration in the pitch wheel,

driving the robot forward and back.

4.3 Hardware Design

The mechanical design of our robot takes inspiration from the Wheelbot with some key changes to

accommodate the addition of a yaw wheel and a larger processor for reinforcement learning. The main

considerations are to minimize the total mass of the robot, while maintaining a low center of mass and

orthogonal control axes.

The yaw wheel is added to allow for steering of the robot, which comes at the cost of extending the

chassis vertically by 3cm.

4.3.1 Self-Righting Capabilities

The self-righting capabilities of the robot were the main factor in determining the overall torque re-

quirements for the project. The Wheelbot paper calculated their required torque to stand up at 1.3

Nm. Following their calculations, we found our own stand up torque from our projected mass, moment

of inertia and height of center of mass to be higher at 1.4 Nm. Details and calculations of the stand

up maneuver can be found in Appendix A. Following this, we chose the MN6007II motors to achieve

similar results as the Wheelbot.

4.3.2 Powering The System

The considerations for battery choice were maximum discharge current, capacity, and mass. The motor

current required to overcome gravity in the rest position is approximately 24A. For this reason, we

chose a battery with 50A maximum discharge current. Next, the battery should have enough capacity

to support self-balancing and navigation for over 10 minutes of RL training. For this, we estimate 2A

continuous average current, for 30 minutes continuous operation, which gives us a large factor of safety.

Finally, the LiPo battery should be under 200g in order to keep overall robot mass to a minimum.

4.3.3 Actuators

Each of the robot’s actuators is made up of a brushless DC (BLDC) motor, a moteus-n1 BLDC motor

driver, an encoder magnet, and various 3D printed parts to provide the mechanical structure of the

sub-system. Similar to other parts on the robot, the actuator design was strongly motivated by the

Wheelbot. The final design of the roll and pitch axis actuators is a compact, self-contained and modular

system that can be moved from various test stands to the chassis of the full robot.

13

Figure 12: Side, angled and back view of the actuators.

4.3.3.1 Motors

Each motor must be able to perform rapidly-changing high torque manoeuvres in order to control the

robot and maintain its upright position. Due to their high torque-to-mass ratio, brushless DC motors are

most suitable for this application, while simultaneously meeting low mass and high torque constraints for

self-righting. The T-Motor Antigravity MN6007 was used by Wheelbot for its high continuous torque,

low mass, and thin outrunning pancake form factor [3]. Similarly, we chose its successor, the T-Motor

Antigravity MN6007II as it makes improvements on both parameters for nearly the same price.

4.3.3.2 Moteus Drivers

The benefits of using brushless motors, comes at the cost of control complexity. Thus, we opted to

buy three moteus-n1 motor drivers for their high power rating, on-board magnetic encoder, open-source

firmware and control libraries, and field oriented based control. The high power rating is necessary

for driving the MN6007II at sufficient voltages during high-torque maneuvers. The driver is mounted

directly behind the motor with its encoder centered to the rotor shaft. The n1’s STM32 runs a 15-30kHz

control loop that implements field oriented control (FOC), an efficient and precise method of controlling

the speed and torque of brushless motors which decouples the torque and magnetic fields. Because of

this, the main 100Hz control loop can send torque requests directly to the driver, which handles the

rest. Additionally, the Moteus can be queried for data such as the motor velocity, motor torque, phase

currents, etc.

4.3.3.3 Flywheel

The design of the flywheel follows very closely to the Wheelbot. Steel rings machined from sheet metal,

are positioned around the center of the MN6007II’s rotor, such that they align with its CoM. These

rings place the mass of the flywheel far from the axis of rotation to increase its moment of inertia. The

housing of the rings is resin printed to avoid inaccuracies in concentricity of FDM 3D printers, which

could cause oscillations in the wheel.

14

4.4 Computer and Software Systems

The robot uses a distributed network of microcomputers for signal processing that is used to control

and respond to the system dynamics. The central controller, an NVIDIA Jetson Nano 4GB was selected

for its GPU enhanced processor and integration with NVIDIA AI training tools. The Jetson comes with

additional cost and weight, however simpler ESP32 or STM32 chip options are non-viable for RL control.

A map of the computation network is shown in Figure 13, including the motor drivers from the previous

section.

Figure 13: Computational system map.

4.4.1 Actuator Control Interface

A USB port on the Jetson connects to a CAN-FD bus which is used to interface with all of the motor

drivers to receive motor data and send torque, position, or velocity requests.

4.4.2 Inertial Measurement Unit

An inertial measurement unit (IMU) connects to the Jetson via a 400kHz I2C connection. The data

read from sensors is stored in the registers of an onboard processor then relayed back to the central

controller to estimate the robot’s position in space.

Our choice of IMU also follows from the Wheelbot. The ICM-20948 is a 9 DoF sensor with a 3-axis

gyroscope, a 3-axis accelerometer, and a 3-axis compass. The data output from the IMU is processed

by the Madgwick complementary filter, a sensor fusion algorithm. The gyroscope provides very accurate

15

orientation changes at a high frequency, but its data is prone to sensor bias and requires a reference to

correct the drift. The accelerometer provides this reference by sensing the direction of gravity. The full

algorithm can be found in the Madgwick publication [5]. Our robot uses a gain value of 0.5-1.0 in the

algorithm.

4.4.3 Server and Telemetry

A wifi dongle connects the Jetson to the internet to send out telemetry data and receive live updates

and commands for development purposes. While the robot communicates with our server via MQTT

protocol, it is important to note that the robot can still operate fully autonomously.

For more information about our telemetry systems please see Appendix B or the web version web version.

4.5 Software Architecture

Our robot software operates with a 100Hz control cycle, a rate which was selected to be reactive to

environmental changes, but slow enough that the sequence of commands can be completed before the

end of a cycle.

Consistent timing is maintained using a recompiled kernel from source, with the PREEMPT-RT patch

enabled, allowing to set a soft ‘real-time’ priority to the control process. The procedure may be of

interest to future projects by our sponsor, so we have included specific instructions in Appendix C, web

version.

The file structure of the project is shown in for access to source files please view the repository hosted

on GitHub.

16

https://chipnbits.github.io/RLUnicycle/telemetry.html
https://chipnbits.github.io/RLUnicycle/rtpatch.html
https://chipnbits.github.io/RLUnicycle/rtpatch.html
https://github.com/Team-2411-RL-Unicycle/rl-unicycle

Figure 14: Project file structure tree diagram.

Our 100Hz control cycle executes the following six steps:

1. Read IMUs: A custom icm20948 library is used to read IMU data.

2. Read Motors: Moteus library reads the motor, driver, and flywheel position/velocity.

3. State Estimate: Madgwick sensor fusion algorithm (Madgwick, 2010) is used to correct for

gyroscopic drift and provide robot orientation estimates.

4. Controller Decision: A selectable controller is used to translate the robot state into a torque

command.

5. New Request to Motors: The controller waits until a fixed time to update the motor drivers

with a new torque request.

6. Offload Telemetry, Import Updates: Data from the control cycle is offloaded to a parallel

process and a receive queue is checked for any external commands.

Figure 15: 100Hz control cycle diagram.

17

The control cycle process is managed from within the robot.RWIP class.

4.6 Control Algorithms

Classical control algorithms aim to model a system using equations that capture its physical behavior

over time, and then adjust the system with inputs to achieve a desired outcome. We plan to evaluate

PID, Linear Quadratic Regulator (LQR) and RL controllers, with PID and LQR being classical controllers

that will set the standard for assessing RL controllers.

4.6.1 Classical Controls

In the RWIP we are using a PID controller and our system model was computed using Lagrangian

classical mechanics see Appendix D Sections 1-6. To reach our goal of balancing, we specified the

desirable outcome to have ϕ = 0 so that the robot is upright in a typical balanced position, but also

θ̇ = 0 so that the wheel is not spinning.

The second condition is important, because once the wheel reaches its top speed, any additional torque

in the same direction has no effect. Thus if the wheel is standing upright but spinning at top speed, a

small perturbation can lead to it falling over without being able to recover.

Figure 16: Reaction wheel inverted pendulum diagram.

Figure 17 describes a simplified overview of our control loop, for the full description see Appendix D.

First, we read from our sensors to find the difference between our current angle ϕ and our goal (usually

0 for upright position, but not always).

18

Figure 17: Detailed flow chart of robot state control loop.

Then the PID controller calculates the torque that is needed from the motor and sends this request

to the Moteus driver. At the start of the next control loop cycle, we read from our sensors again and

repeat the process, converging to our desired balancing state.

4.6.2 RL Controls

Reinforcement Learning (RL) at its core attempts to develop robust controllers using machine learning

and the concept of learning through “trial and error.” More formally, an agent (our robot) in a state

within some environment takes actions and observes their impact on both its state and the environment

479 Capstone Team 2166 [4]. The agent is controlled by a policy which attempts to maximize a reward

function.

Figure 18: Reinforcement Learning straining loop diagram. Source: Deep Reinforcement Learning for
Constrained Field Development Optimization in Subsurface Two-phase Flow

While it is possible to train RL agents in the real world, there are a variety of physics simulation packages

designed for efficiently training agents on hardware optimized for machine learning. The simulator and

19

RL framework used in our project is NVIDIA’s Isaac Gym. Isaac Gym allows rapid iteration on different

agents, reward functions, and policies, and the simulated environment allows exploring different options

safely without the risk of damaging your hardware by training in real life. Isaac Gym also allows users

to import CAD models directly into simulation which is very beneficial to our development pipeline

Figure 19: Accelerated reinforcement learning training loop showing forward pass interactions and
backward pass optimizations Source: https://blogs.nvidia.com/blog/deep-reinforcement-learning-gpus-
robotics/

While the concept of training thousands of agents all in parallel within a simulation sounds great, it is

not guaranteed that the learned policy will be effective in the real world. One of the primary techniques

for bridging the gap between simulation and real life (known as sim2real) is Domain Randomization

(DR). DR accounts for randomly varying various parameters in simulation resulting in a policy that can

better generalize in the wild [6].

4.6.3 RWIP Reinforcement Learning Control

As a proof of concept for our sim2real pipeline and RL control we designed a balancing policy for

the RWIP. Our policy network is designed to output torque requests which integrate well with Moteus

drivers. The state space of the model consisted of the pendulum angle and angular velocity as well as

the angular velocity of the reaction wheel. After experimenting with several reward functions we settled

20

on:

r(t) = 1− θ4 − 2 ∗ ω2 − 0.5|τ |

Where θ is the angle of the pendulum away from vertical, ω is the angular velocity of the wheel, and τ

is the torque generated by the motor. The above function was successful as the quadratic penalty on

velocity and linear penalty on torque lead to efficient balancing without spinning up the motor to high

velocity or drawing high current with dramatic torques. The quartic penalty on angle allows the robot

to have some small oscillations about upright which is preferable to the jerkier and less stable control

which comes with harsher angle penalties.

In order to facilitate better performance in real life, DR was added to the input observations and output

actions of the policy network. A scaling function was also added to the requested torques in simulation

so that the policy can learn to account for the effect of angular velocity on achievable torque requests.

Finally, reduced episode times prevented the RWIP from spending too much time in ideal situations

during training that were not representative of real life (perfectly balanced upright).

This resulted in a policy which could balance effectively forever in real life while keeping wheel velocity

below 2 rev/s.

5 Current Progress

The first four months of project development consisted of understanding the physics of the system,

designing our robot, and planning our prototyping stages. Starting January 2024, we fabricated our test

jigs and developed our software system. By the Project Fair in April, we integrated the sensors and

actuators into a common control algorithm on the Jetson Nano, built a single-DOF prototype, and had

a PID controller and a Reinforcement Learning controller working.

• Two working controllers, a PID controller and an RL controller

• Each controller can self-right from a resting angle of 27◦ autonomously

• Both controllers can balance indefinitely and withstand significant external disturbances

• The Jetson consistently holds a 100Hz cycle

• IMU is not drifting

Additionally, the first draft of the complete robot chassis is complete with a mount for the battery,

Jetson and yaw wheel.

21

Figure 20: RWIP front, side and back view. Final robot draft chassis.

6 Conclusions

The main challenges in designing our prototype were removing noise and drift from our sensors, un-

derstanding the control of our motors for safe operation with lab equipment, and facilitating communi-

cation between our drivers, sensors, and microcontroller. The prototype has provided valuable insight

and solutions to these challenges, and the lessons learned will carry over to next year’s work. We have

successfully met all objectives for the prototyping and development stage of the project, planned in the

initial proposal:

22

Figure 21: Project flowchart from proposal.

So far, we have observed our PID controller and Reinforcement Learning controller to have similar

performance. We expect Reinforcement Learning to have an advantage over PID when we create our

full robot next year because of its ability to learn non linear behaviours.

7 Future Development and Recommendations

Next year we will incorporate our findings from the RWIP prototype into the full robot design. We plan

to explore other control methods such as LQR, which we expect to handle multiple independent inputs

and outputs better than PID based on the findings of the Wheelbot [3]. This will be used to benchmark

23

the performance of a reinforcement learning controller which we hope will unlock some of the interesting

nonlinear control dynamics inherent to angular motion. Finally, we plan to implement point-to-point

navigation to extend the capability and compare performance across different control techniques.

We will test and validate the full robot design under restrained motion for the pitch and roll axis, after

which we can pursue advanced development, including the use of ground truth external sensors. Our

target is to have full RL capabilities on the robot by May 2025.

Figure 22: Project flowchart for 2024-2025

Regarding recommendations for prototype design, we recommend designing and fabricating the chassis

of the robot early to prototype rapidly. Additionally, we recommend spending time early to implement

an E-Stop for safe operation of LiPo batteries.

24

8 Deliverables

Our deliverables for the project so far are listed the following:

1. Source code: https://github.com/Team-2411-RL-Unicycle/rl-unicycle.git

2. CAD files: Main assembly

3. Omniverse Isaac Sim RL Environments Fork: https://github.com/JacksonnF/OmniIsaacGymEnvs

4. Physical prototype

References

[1] AIUR ENPH 479 Capstone Team 1868-69. Team Project.

[2] Richard P. Feynman, Robert B. Leighton, and Matthew Sands. “Rotation in Space”. In: The

Feynman Lectures on Physics. Vol. I. Accessed April 7, 2024. Pasadena, CA: California Institute of

Technology, 1964. Chap. 20. url: https://www.feynmanlectures.caltech.edu/I_20.html.

[3] A. René Geist et al. “The Wheelbot: A Jumping Reaction Wheel Unicycle”. In: arXiv (July 2023).

url: http://arxiv.org/abs/2207.06988.

[4] K. Gordon et al. OpenSim2Real Monopod Platform. 479 Capstone Team 2166. Team Project.

[5] S. O. Madgwick, A. J. Harrison, and A. Vaidyanathan. “Estimation of IMU and MARG orientation

using a gradient descent algorithm”. In: 2011 IEEE International Conference on Rehabilitation

Robotics. 2011, p. 5975346. doi: 10.1109/ICORR.2011.5975346.

[6] TWIP ENPH 479 (Gym2Real) Capstone Team 2153. Team Project.

25

https://github.com/Team-2411-RL-Unicycle/rl-unicycle.git
https://github.com/JacksonnF/OmniIsaacGymEnvs
https://www.feynmanlectures.caltech.edu/I_20.html
http://arxiv.org/abs/2207.06988
https://doi.org/10.1109/ICORR.2011.5975346

Appendix A

Standup Calculations

A numerical analysis of standup torque requirements.

standup_calculations

April 14, 2024

[27]: import numpy as np
from scipy.integrate import odeint
import matplotlib
import matplotlib.pyplot as plt

[28]: class robot:
def __init__(self) -> None:

Mass Definitions
self.m_reaction_wheel = 0.2
self.m_motor = 0.18
self.m_yaw_motor = 0.046
self.m_yaw_reaction_wheel = 0.1
self.m_chassis = 0.3 + 0.3
self.m_batteries = 0.185
self.m_microcontroller = 0.24

self.total_mass = 2 * self.m_reaction_wheel + 2 * self.m_motor + self.
↪m_yaw_motor + self.m_yaw_reaction_wheel + self.m_chassis + 4 * self.
↪m_batteries + self.m_microcontroller - 0.07

TESTING 1 vvv
self.total_mass = self.m_reaction_wheel + self.m_motor + 0.546 + .3

END TESTING 1 ^^

self.m_robot_body = self.total_mass - 2 * self.m_reaction_wheel # Note:␣
↪Including yaw wheel in robot body for now

Motor Parameters
self.max_rpm = 3000 # rpm
self.max_rpm_rad = self.max_rpm * (2 *np.pi) / 60 # rad/s
self.stall_torque = 1.4 # Nm

Dimension Parameters
self.wheel_diameter = 0.095 # 10cm
self.wheel_radius = self.wheel_diameter / 2

27

self.robot_height = 0.14 # Length of cylinder (assume COM in middle for now)

TESTING 2 vvv
self.robot_height = 0.18

END TESTING 2 ^^

self.robot_diameter = 0.1
self.robot_radius = self.robot_diameter / 2

Note currently using wheelbots calculated wheel moments of inertia for␣
↪rxn wheels (can be replaced easily) http://hyperphysics.phy-astr.gsu.edu/
↪hbase/icyl.html

Rolling wheel inertias
self.I1x = 0.000259 # pointing in drive direction
self.I1y = 0.000503 # Rotational DOF inertia in kg * m2
self.I1z = 0.000259

Reaction wheel Inertias
self.I3x = 0.000503 # Rotational DOF Inertia
self.I3y = 0.000259
self.I3z = 0.000259 # Pointing'up'

Calculate robot body Intertia (about COM)
self.Ibx = 1/4 * self.m_robot_body*self.robot_radius**2 + 1/12 * self.

↪m_robot_body * self.robot_height**2
self.Iby = self.Ibx
self.Ibz = 1/2 * self.m_robot_body * self.robot_radius**2

def robot_ode(self, y, t, I_tot, I_rxn_wheel, d_to_cog, m_tot):
theta, d_theta, omega = y

T0 = self.stall_torque # Stall torque
omega0 = self.max_rpm_rad # Max motor rate under load 282rad/s = 2700 RPM
T=T0

Mg = m_tot * 9.81 * d_to_cog * np.sin(theta)
dd_theta = (Mg - T) / I_tot
d_omega = T / I_rxn_wheel

dydt = [d_theta, dd_theta, d_omega]
return dydt

def yaw_ode(self, y, t, torque_func, I_tot, I_rxn_wheel, m_tot, mu_static,␣
↪mu_dynamic, patch_radius):

'''

28

Differential equation for yaw motion considering friction.

Inputs:
y - current state [theta, d_theta, omega]
t - current time
torque_func - function to calculate torque as a function of time
I_tot - total moment of inertia for robot
I_rxn_wheel - reaction wheel moment of inertia
m_tot - total mass of robot
mu_static - static torsional friction coefficient
mu_dynamic - dynamic friction coefficient
patch_radius - estimated radius of contact patch with the ground
'''

theta, d_theta, omega = y # Unpack the current state

Calculate normal force (approximation: weight of the robot)
N = m_tot * 9.81

Static and dynamic frictional torques
tau_static = mu_static * N * patch_radius
tau_dynamic = mu_dynamic * N * patch_radius

Get torque input as a function of time
T = torque_func(t)

Determine the direction of frictional force
friction_direction = np.sign(d_theta)

Check if static friction is overcome
if abs(d_theta) <= 0.002:

if abs(T) < abs(tau_static):
Must overcome friction to move
dd_theta = 0

else:
Static friction not overcome, robot does not start rotating
dd_theta = (T-tau_static*friction_direction)

else:
Static friction overcome, robot starts rotating
Net torque on the robot (subtract dynamic frictional torque)
net_torque = T - tau_dynamic * friction_direction
Angular acceleration of the robot
dd_theta = net_torque / I_tot

Reaction wheel dynamics
d_omega = T / I_rxn_wheel

29

dydt = [d_theta, dd_theta, d_omega]
return dydt

[29]: r = robot()
print("Total Mass", r.total_mass)
print("Moments of Inertia", r.I1x, r.I3x, r.Ibx)
print("Robot Height", r.robot_height)
print("Stall Torque", r.stall_torque)

Total Mass 1.226
Moments of Inertia 0.000259 0.000503 0.00274645
Robot Height 0.18
Stall Torque 1.4

[30]: # Cylinder standing on side, parallel axis down to contact point
m * d**2 + i_0

Also calculate I for wheel and shift down

Standup w point of rotation edge of roll wheel

parallel axis theorem
s_rollw = r.m_reaction_wheel * r.wheel_radius**2
s_rxnw = r.m_reaction_wheel * (r.robot_height + r.wheel_radius)**2
s_body = r.m_robot_body * (r.robot_height/2 + r.wheel_radius)**2

TESTING 3 vvv
r.I1x = 0.000501
r.I3x = 0.005224
r.Ibx = 0.000401

END TESTING 3 ^^

I_total = r.I1x + r.I3x + r.Ibx + (s_rollw + s_rxnw + s_body)

[31]: # Define initial parameters of ode
d_cog = r.robot_height / 3 + r.wheel_radius # Distance to contact point from cog

TESTING 4 vvv
d_cog = 0.15

END TESTING 4 ^^

Note: the angle is measured from vertical to z-axis of robot
initial_angle = np.deg2rad(28) # In radians
final_angle = 0

30

y0 = [initial_angle, 0, -r.max_rpm_rad]
t = np.linspace(0, 0.25, 100)

[32]: ode_soln = odeint(r.robot_ode, y0=y0, t=t, args=(I_total, r.I3x, d_cog, r.
↪total_mass))

[33]: plt.figure()

Create first y-axis for theta
ax1 = plt.gca()
ax1.plot(t, np.rad2deg(ode_soln[:, 0]), 'b', label='Theta(t)')
ax1.axhline(y=0.0, color='darkblue', linestyle='--', label='Target Theta')
ax1.set_xlabel('Time (seconds)')
ax1.set_ylabel('Theta: Angle from Vertical (degrees)', color='b')
ax1.tick_params(axis='y', labelcolor='b')

Create second y-axis for RPM
ax2 = ax1.twinx()
ax2.plot(t, 0.1*ode_soln[:, 2], 'darkred', label='Reaction Wheel Speed (RPM)')
ax2.axhline(y=0.1*-r.max_rpm_rad, color='darkred', linestyle='--', label='Min␣

↪RPM')
ax2.axhline(y=0.1*r.max_rpm_rad, color='darkred', linestyle='--', label='Max␣

↪RPM')
ax2.set_ylabel('Max RPM', color='darkred')
ax2.tick_params(axis='y', labelcolor='darkred')

Enhance layout and grid
plt.margins(x=0)
ax1.grid(True)

Set legends for each axis with positioning on the left side inside the plot
ax1.legend(loc='center right')
ax2.legend(loc='center left')

Limiting the x-axis range
x_min, x_max = 0, 0.24 # Define your limits here
ax1.set_xlim(x_min, x_max)

Show plot
plt.show()

31

The yaw wheel moment and the robot net moment are required to analyse the acceleration of each
respective body under a torque.

Working with the 46g motor listed at https://store.tmotor.com/goods-1150-
IP35+MN2806+Antigravity+Type+4-6S+UAV+Motor+400650KV.html

Dimensions

[34]: # Calculations for Yaw wheel and requirements
For simplicity we will assume a chunky cylinder.
M = r.total_mass - r.m_reaction_wheel # Remove the Yaw Wheel
I_tot = 1/2*M*(.075)**2 # This estimate uses robot diameter of␣

↪15cm

Specify the motor mass and inertia
yaw_motor_inertia = .5*.025 * (.035/2)**2 # Estimate for the motor winding␣

↪inertia

We mount ontop of the small motor, mass of ~50g. then 100g of material is␣
↪placed around outer ring

#Radius is ~ 20cm for the mass placement

32

yaw_radius = .030 # Reaction wheel radius
yaw_mass_addition = .15 # Reaction wheel mass (mass fixed at the outer radius)
yaw_inertial_mass = yaw_mass_addition*yaw_radius**2 # Yaw wheel inertia (mass␣

↪placed around edge)
Iyaw = yaw_motor_inertia + yaw_inertial_mass
r_patch = .005 #1cm diameter ground contact patch
mu_static = .65 # Guessing game
mu_dynamic = .45 # Guessing game

robot angle, speed of spin, yaw wheel speed
y0 = [0, 0, 0]
t = np.linspace(0, 1, 200)

peak_torque = .105 # Peak torque is .22Nm

def torque_function(t, peak_torque=peak_torque, duration=0.5):
"""
Returns a constant torque for a specified duration and then stops.

:param t: Current time
:param peak_torque: The peak torque value
:param duration: Duration for which the torque is applied
:return: Torque at time t
"""
if t <= duration:

return peak_torque
elif t <= 1.4*duration:

return -peak_torque
else:

return -.05

ode_soln = odeint(r.yaw_ode, y0=y0, t=t, args=(torque_function, I_tot, Iyaw, r.
↪total_mass, mu_static, mu_dynamic, r_patch))

[35]: yaw_rpm = ode_soln[:, 2] * 60 / (2*np.pi)

Create a figure and a set of subplots
fig, ax1 = plt.subplots()

Plot the first data set (Robot Direction) on the first y-axis
ax1.plot(t, np.rad2deg(ode_soln[:, 0]), 'b', label='Robot Direction')
ax1.set_xlabel('Time (t)')
ax1.set_ylabel('Robot Direction (degrees)', color='b')
ax1.tick_params(axis='y', labelcolor='b')
ax1.margins(x=0)
ax1.grid()

33

Create a second y-axis with the same x-axis
ax2 = ax1.twinx()

Plot the second data set (Yaw Speed) on the second y-axis
ax2.plot(t, yaw_rpm, 'darkred', label='Yaw Speed')
ax2.set_ylabel('Yaw Speed (RPM)', color='darkred')
ax2.tick_params(axis='y', labelcolor='darkred')

Adding legends
ax1.legend(loc='upper left')
ax2.legend(loc='lower right')

Add a horizontal line at 90 degrees
ax1.axhline(y=90, color='green', linestyle='--', linewidth=2)

Add a label for the turn degree line
x_position_for_label = max(t) * 0.5 # Adjust this as needed for your plot
ax1.text(x_position_for_label, 90, '90 degree turn',␣

↪verticalalignment='bottom', color='green')

Show the plot
plt.show()

static_friction = M*9.81*mu_static
Print the results
print(f"Mass of the robot (M): {M: .3f} kg")
print(f"Static Friction: {static_friction: .3f}N") # N for Newtons
print("Mass of Motor:", 50, "g")
print("Mass of Reaction Wheel:", yaw_mass_addition*1000, "g")
print(f"Diameter of Reaction Wheel: {yaw_radius*2*100: .3f} cm")
print(f"Applied Torque: {.105: .3f}Nm")

34

Mass of the robot (M): 1.026 kg
Static Friction: 6.542N
Mass of Motor: 50 g
Mass of Reaction Wheel: 150.0 g
Diameter of Reaction Wheel: 6.000 cm
Applied Torque: 0.105Nm

35

Appendix B

Telemetry and Database Systems

A description of a robotics telemetry server configuration.

Telemetry and Database System
Documentation

Simon Ghyselincks, Team 2411

2024-04-15

Purpose

This is a user summary document for our capstone telemetry and database server. It is intended
to provide an overview of the different services that are in use for the data pipeline. The
capstone project leverages the MING stack as shown in the overview diagram below.

I recommend using a central server to manage all of these services through a Zerotier Virtual
Network. This will allow you to access the services from anywhere via the internet without
exposing the server to the public.

Hardware Recommendation

The Lenovo M900 series of refurbished tiny PCs are recommended as an affordable option that
meets the compute needs for a server. The SSD of the device was set to dual boot into Linux
Ubuntu 22.04 for the purposes of running a server.

The Raspberry Pi 4B 8GB with a an external SSD was tested as a configuration but the
requirements are at the limits of the processing power of the device.

Telemetry Services Overview

Telemetry and Control Command Communications

37

ZeroTier Virtual Network

Zerotier is a virtual network that allows for secure communication between devices over the
internet. It is a VPN that allows for devices to be connected to a virtual network and
communicate with each other as if they were on the same local network.

To setup a network you should first create a free account at https://my.zerotier.com/. Once
you have an account you can create a network and add devices to it. The network ID is a 16
digit number that is used to identify the network.

Zerotier Client

The Zerotier client is a software that is installed on the devices that you want to connect to
the network. Each device intended for the network including the server should have the client
installed. Once it is installed, enter the network ID from the Zerotier website and then approve
the device to the network. You may wish to set static IP addresses, especially for the server.
This can all be done through the Zerotier website.

https://www.zerotier.com/download/

38

MQTT Overview

The robot an network is using the MQTT protocol to implement live telemetry. Topics are used
on a subscriber publisher basis. All communication is routed through the Lenovo server that is
acting as the broker. The Mosquitto MQTT server software is running on the Lenovo server
which is the IP address used for routing messages. The default port for MQTT is 1883.

Define the MQTT settings
broker_address = "172.22.1.1" #Lenovo's IP address
port = 1883
topic = "robot/telemetry"

The MQTT explorer offers comprehensive tools to explore available topics and more:
https://mqtt-explorer.com/ This can be a very useful tool for debugging and exploring the
MQTT network to check if messages are being sent and received.

MQTT interfaces with Python, Node-Red, and Grafana to provide a comprehensive data
pipeline. The MQTT broker is the central hub for all data that is being sent and received. The
broker can be accessed by any device on the ZeroTier network that is subscribed to the topic.

MQTT Summary

MQTT is a lightweight messaging protocol that provides an efficient and cost-effective method
of carrying out telemetry-based communication between devices. It’s especially popular in
Internet of Things (IoT) applications due to its minimal bandwidth requirements and ease of
implementation on hardware with limited processing capabilities.

Key Features of MQTT:

• Lightweight Protocol: Ideal for constrained devices and networks with limited bandwidth.
• Publish-Subscribe Model: Allows devices to publish messages to a topic and any client

subscribed to that topic will receive the messages.
• Reliable Message Delivery: Offers various levels of Quality of Service (QoS) to guarantee

message delivery.
• Minimal Overhead: Adds only a small overhead to each message, ensuring efficient use of

network resources.
• Retained Messages: Supports retaining the last message sent on a topic, making it

available immediately to new subscribers.
• Last Will and Testament: Provides a means for a client to notify other clients about an

abnormal disconnection.

39

Application for our Robot

The Lenovo acts as a broker for all the data that is streaming out of the robot over a Wi-Fi
connection to the internet. This offloads the databasing and broadcasting duty from the robot
to the broker which can dedicate more resources to data management. The robot can publish
data to a topic, which can be picked up by various subscribers such as the Lenovo’s Grafana
server or other laptops, phones, etc that are connected to the broker and subscribed to the
topic.

More Detailed System Diagram needed

The broker can duplicate the published data to many devices in real-time. Another hidden
stream for the data is through Node-Red to InfluxDB where the aggregate data can be store
more permanently for access to testing records at a later date. Additionally, an MQTT bridge
is connected to the Pi’s Grafana server which offers an advanced dashboard service for viewing
live telemetry. Note that databased telemetry can also be viewed through Grafana which is
connected to InfluDB, but it is a seperate data stream from MQTT and should have a seperate
dashboard.

Publishing Messages

A sample script for publishing messages with Paho-MQTT client Documentation to the
Lenovo server/broker while connected to Zero-Tier is provided, see the mqtt.py file. The script
allows for publishing a controller value or a cpu_usage data point.

Prerequisites

40

• MQTT Broker Setup: Ensure that the MQTT broker, in this case, the Lenovo server, is
up and running.

• Network Connection: Connect your device to the Zero-Tier network to ensure visibility
and access to the broker.

• Python Environment: Make sure Python is installed on your device along with necessary
libraries: paho-mqtt, json

• Broker Details: In the script, set the broker_address to the Lenovo server’s IP address
and port to 1883 (default MQTT port).

A client is formed with a ClientID that should be descriptive, we then connect to the
MQTT broker A dictionary of values can be converted to JSON format using JSON
dump, method. The broker is designed to work with either raw values or JSON The
JSON values can be a collection of data types with a Key and Value

The publish method publishes the data to the desired stream where other clients can
subscribe to the topic.

Subscribing to messages:

• A Grafana server has been setup where some useful dashboards can be maintained. The
IoT MQTT Panel for Android also offers some nice services including the ability to
send messages.

• More details on subscribing through the Paho-MQTT client can be found at https:
//www.emqx.com/en/blog/how-to-use-mqtt-in-python ### QoS The protocol allows
for fast transmission of messages and a similar PUB/SUB model as ROS topics. Telemetry
read data can be sent using QoS level 0 which only attempts a single delivery of the
data and does not wait for confirmation of receipt, this is perfectly acceptable for fast
streaming data that is not mission critical.

For mission critical commands such as parameter adjustments and messages to the robot, a
QoS level of 2 can be tied to the message which ensures that it is delivered to the robot exactly
once. This avoids duplicate commands or lost commands through the network. It is a slower
communication protocol but it is not an issue for lower bandwidth messages that are orginating
from control devices to the robot.

Grafana Live Telemetry and Database Dashboards

Grafana is a powerful open-source platform for creating dashboards and visualizing time-series
data. It is particularly well-suited for monitoring and analyzing real-time data. Grafana
supports a wide range of data sources and can be used to display both live and historical data
in a variety of formats, including graphs, tables, and gauges. Think of it as graph nirvana.

41

When it comes to viewing the telemetry data, a plugin can be installed to function as a bridge be-
tween the MQTT broker and the Grafana server. https://grafana.com/grafana/plugins/grafana-
mqtt-datasource/

To setup Grafana, install the software on the Lenovo server first. The default port for Grafana
is 3000. The program operates through a web browser and can be accessed by navigating to
the IP address of the Lenovo server on port 3000.

Once you have logged in, you can add a data source by selecting MQTT from the list of
available data sources if you have correctly installed the plugin. The panel will listen to all
messages on a particular topic and display them in a graph or table format.

InfluxDB Databasing

The database can be accessed through Python API, through Grafana, or even a direct viewer.
The database is also to be installed on the Lenovo server. The default port for InfluxDB is
8086. The database can be accessed through a web browser by navigating to the IP address of
the Lenovo server on port 8086.

MQTT gives livestream data but if we want data storage and permanence between runs it
needs to be databased. InfluxDB offers this service along with data manipulation services and
a special query language. It also includes a data explorer through the web interface.

Node Red

Node Red is a flow-based open source development tool for visual programming developed
by IBM. It is used for wiring together hardware devices, APIs, and online services in new
and interesting ways. It provides a browser-based editor that makes it easy to wire together
flows using the wide range of nodes in the palette that can be deployed to its runtime in a
single-click.

For this application Node Red is used to bridge the MQTT broker to the InfluxDB database.
This allows for the data to be stored in a database for later access. The data can be manipulated
and stored in a more permanent format.

The Node Red server is installed on the Lenovo server. The default port for Node Red is 1880.
The program operates through a web browser and can be accessed by navigating to the IP
address of the Lenovo server on port 1880.

42

Node Red Dashboard

Figure 1: Node Red Dashboard

The Node Red dashboard is an additional feature that is accessed through the Node Red
server. It allows for the creation of custom dashboards that can be used to provide a GUI
for a robotics project. The GUI can be used to connect directly to incoming signals and also
produce outgoing command signals that can be sent to the robot.

Conclusion

These service conbined together have proven to be a powerful tool for capstone development.
In addition the Lenovo server functions as a valuable workstation for the team. The services
are all open source and free to use. The services are also very well documented and have a
large community of users that can help with any issues that may arise. Best of luck with your
capstone project!

43

Appendix C

RL Kernel Linux on Jetson Nano

Instructions for enabling the PREEMPT RT flag for real time control on the NVIDIA Jetson

Nano.

RT Kernel Linux on Jetson Nano
Simon Ghyselincks, Team 2411

2024-04-15

Linux RT Kernel Compile Guide

The following guide is intended to provide step-by-step instructions on how to compile a
real-time (RT) Linux kernel for the NVIDIA Jetson Nano. The RT kernel is based on the
PREEMPT_RT patch, which adds real-time capabilities to the Linux kernel by making it fully
preemptible and reducing the latency of the kernel’s interrupt handling.

This guide has been modified from some valuable instructions found at: https://forums.devel
oper.nvidia.com/t/applying-a-preempt-rt-patch-to-jetpack-4-5-on-jetson-nano/168428/4

Download Source Files and Install Packages

First download the BSP from the NVIDIA website. The BSP contains the kernel source code,
device tree files, and other necessary files for building the kernel. The BSP also contains the
sample root filesystem, which is used to create the final image for the Jetson Nano. You may
wish to look up the most recent version of the Tegra for Linux, in this case we are using
R32.7.4.

You can download all of these files onto a Linux machine specifically running Ubuntu 18.04.
Another option that has been tested is compiling on the Jetson Nano itself which is running
the correct version of Linux by default. For our project we installed 18.04 on a laptop and
compiled the kernel there.

ñ Note

Source Files:
https://developer.nvidia.com/embedded/linux-tegra-r3274

Download:

• Driver Package (BSP)

45

• Sample Root File System

• Driver Package (BSP) Sources

• GCC Tool Chain can also be obtained via the command line:
wget http://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu.tar.xz

Pile all the files into a single directory and install packages

sudo apt-get update
sudo apt-get install libncurses5-dev
sudo apt-get install build-essential
sudo apt-get install bc
sudo apt-get install lbzip2
sudo apt-get install qemu-user-static
sudo apt-get install python

mkdir $HOME/jetson_nano
cd $HOME/jetson_nano

Extract all of the files

sudo tar xpf jetson-210_linux_r32.7.4_aarch64.tbz2
cd Linux_for_Tegra/rootfs/
sudo tar xpf ../../tegra_linux_sample-root-filesystem_r32.7.4_aarch64.tbz2
cd ../../
tar -xvf gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu.tar.xz
sudo tar -xjf public_sources.tbz2
tar -xjf Linux_for_Tegra/source/public/kernel_src.tbz2

Apply RT Patch

Go into extracted kernel source and apply RT patch

cd kernel/kernel-4.9/
./scripts/rt-patch.sh apply-patches

Configure and compile:

46

TEGRA_KERNEL_OUT=jetson_nano_kernel
mkdir $TEGRA_KERNEL_OUT
export CROSS_COMPILE=$HOME/jetson_nano/gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-
make ARCH=arm64 O=$TEGRA_KERNEL_OUT tegra_defconfig
make ARCH=arm64 O=$TEGRA_KERNEL_OUT menuconfig

The menu config opens an old school BIOS menu. Set the proper settings for the RT kernel:

General setup → Timer subsystem → Timer tick handling → Full dynticks system
(tickless)
Kernel Features → Preemption Model: Fully Preemptible Kernel (RT)
Kernel Features → Timer frequency: 1000 HZ

At this point you can go tamper with device tree files (.dtsi) or other things, next step is the
compile stage!

Optional Mods

I tried to modify

tegra210-porg-gpio-p3448-0000-b00.dtsi

the source file, found using a find file function in terminal. It did not fix things. In general the
P3450 model requires the p3448-0000-3449-b00 series of files. This was confirmed by looking at
all the source configs and scripts.

Compile

make ARCH=arm64 O=$TEGRA_KERNEL_OUT -j4

sudo cp jetson_nano_kernel/arch/arm64/boot/Image $HOME/jetson_nano/Linux_for_Tegra/kernel/Image
sudo cp -r jetson_nano_kernel/arch/arm64/boot/dts/* $HOME/jetson_nano/Linux_for_Tegra/kernel/dtb/
sudo make ARCH=arm64 O=$TEGRA_KERNEL_OUT modules_install INSTALL_MOD_PATH=$HOME/jetson_nano/Linux_for_Tegra/rootfs/

cd $HOME/jetson_nano/Linux_for_Tegra/rootfs/
sudo tar --owner root --group root -cjf kernel_supplements.tbz2 lib/modules
sudo mv kernel_supplements.tbz2 ../kernel/

cd ..
sudo ./apply_binaries.sh

47

The image creator requires the device model. For the 4GB Jetson nano it is -r 300. This will
select the correct dtb:

cd tools
sudo ./jetson-disk-image-creator.sh -o jetson_nano.img -b jetson-nano -r 300

It is crucial to select the correct device tree since it will not boot otherwise. If you are unsure
of which to select, follow through the source cocde in the jetson-disk-image-creator.sh to find
what the different flags do. Or try the NVIDIA forums but good luck over there!

Use Balena etcher to put image in $HOME/jetson_nano/Linux_for_Tegra/tools/jetson_nano.img
onto the SD card

Python in RT

The python script needs to be run with the priority changed from (20) to highest level (99) for
it to be RT enabled.

. Warning

Running a task at this level could lock the CPU or cause system instability.

Setting Python Scheduling Privileges

Note that for this description our team is using Python 3.8 in a virtual environment, the
instructions path files may change slightly if using a different version.

The scheduling priority is a top-level system command and is usually locked behind ‘sudo’.
This is problematic when running a Python script because we don’t want to run it as sudo
allowing it full access to wreak havoc on the OS. The solution is to grant only the scheduling
part of ‘sudo’ to the Python interpreter:

This command only needs to be set once after Python 3.8 is installed (the same in
use in our venv): sudo setcap 'cap_sys_nice=eip' /usr/bin/python3.8

1. setcap: This is a utility that sets or changes the capabilities of a file/executable.
Capabilities are a Linux feature that allow for more fine-grained access control; they
provide a way to grant specific privileges to executables that normally only the root user
would have.

2. 'cap_sys_nice=eip': This argument specifies the capabilities to be set on the file, in
this case, /usr/bin/python3.8. It’s composed of three parts:

48

• cap_sys_nice: This is the specific capability being set. cap_sys_nice allows the
program to raise process nice values (which can deprioritize processes) and change
real-time scheduling priorities and policies, without requiring full root privileges.

• e: This stands for “effective” and means the capability is “activated” and can be
used by the executable.

• i: This stands for “inheritable”, meaning this capability can be inherited by child
processes created by the executable.

• p: This stands for “permitted”, which means the capability is allowed for the
executable. It’s a part of the set of capabilities that the executable is permitted to
use.

3. /usr/bin/python3.8: This is the path to the Python 3.8 executable. The command sets
the specified capabilities on this specific file.

Setting Script Specific RT

The ‘RT’ scheduling priority is code 99. Some imported C implementation allows for resetting
the scheduling for the process. The function is wrapped in try/except block to ensure it
activates.

Define constants for the scheduling policy
SCHED_FIFO = 1 # FIFO real-time policy

class SchedParam(ctypes.Structure):
fields = [('sched_priority', ctypes.c_int)]

def set_realtime_priority(priority=99):
libc = ctypes.CDLL('libc.so.6')
param = SchedParam(priority)
Set the scheduling policy to FIFO and priority for the entire process (0 refers to the current process)
if libc.sched_setscheduler(0, SCHED_FIFO, ctypes.byref(param)) != 0:

raise ValueError("Failed to set real-time priority. Check permissions.")

We run this function at the start of the script which will reassign the scheduling priority to the
highest level. This can be verified to work by opening the system monitor and checking the
priority of the script such as with htop.

49

Figure 1: RT Priority Enabled

50

Appendix D

1-DOF Equations of Motion and Control Dynamics

A derivation of the equations of motion, transfer functions, and PID controller for a reaction

wheel pendulum prototype.

1-DOF System Dynamics and Classical Controls

Simon G

April 2024

1 Introduction

The following is a demonstration of the derivation for the equations of motion for a single degree of freedom
reaction wheel inverted pendulum. The approach used is energy methods via the Lagrangian using classical
mechanics.

An automated derivation sequence using MATLAB is presented, which allows for parsing the equations
of motion for an arbitrary system such as a 4-DOF unicycle robot. The code for the auto-derivation has
been tested by hand against known solutions in the literature, as explored by Brevik (2017), Montoya and
Gil-González (2020).

2 Problem Description

Figure 1: The dynamics of the reaction wheel pendulum.

52

The inverted pendulum is attached to a hinge point at A and has a flywheel mounted to a motor at C.
The analysis of the problem involves two rigid bodies: the pendulum arm and the spinning flywheel. The
parameters of importance for each are

• l, the distance from the rotation point A to the center of mass of the body.

• I, the moment of inertia of the body about its centroid.

• m, the total mass of the body.

We use the subscript p for pendulum properties and w for wheel properties. lp = ĀB, lm = ĀC

The properties in practice are determined experimentally or with the assistance of CAD.

Since we are restricted to the 2D plane in this single degree of freedom problem, there is only a single
moment of inertia instead of a tensor like in the case of 3D.

We also specify our general coordinates for the problem. Importantly the angle θ is chosen relative to
the pendulum arm since this is what is measurable by an encoder on the joint. The angle ϕ is measured
relative to the vertical, a configuration suitable for either an encoder at A or an IMU referencing gravity.

3 Parameter Measurement

3.1 Mass and Center of Mass Measurements

The mass and center of mass (CM) were measured using a lab scale and a balancing method, respectively.

• Flywheel: The wheel and rings mass (denoted as mw) was measured to be 346g. The CM of the
wheel from the pendulum hinge (denoted as lw) is 180mm. This was measured in CAD and also with
a ruler.

• Pendulum and Motor: The combined mass of the pendulum and motor with stator (denoted as
mp) was measured to be 531g. The CM of the pendulum with motor and stator (denoted as lp) is
100mm. The pendulum CM is found by balancing the apparatus with removed flywheel overtop of a
fulcrum and finding the stable resting point position.

3.2 Inertia Calculations

The moment of inertia for each component was calculated using the parallel axis theorem and the physical
dimensions provided by CAD models and direct measurement.

3.2.1 Wheel Inertia

The wheel inertia (denoted as Iw) was found by comparing the CAD weight to the measured weight of the
flywheel to find agreement:

Iw = 725 kg ·mm2

In particular the metal rings were weighed and set to be the same weight in CAD which is the most influential
part of the moment in question.

53

3.2.2 Pendulum Inertia

The pendulum moment of inertia (denoted as Ip) is a composite value derived from the inertia of individual
components:

1. Battery: The battery contributes an inertia of:

Ibattery =
1

12
· 0.185 · (702 + 352) + 0.185 · 502 = 446 kg ·mm2

2. Pendulum Arm: The corrected inertia for the pendulum arm is:

Iarm = 346 kg ·mm2 + 0.102 · 452 = 552 kg ·mm2

3. Motor and Mount: The combined inertia for the motor and mount is:

Imotor = 0.5 · 0.206 · 302 + 0.206 · 752 = 1251.75 kg ·mm2

The total pendulum inertia is then calculated as the sum of the components:

Ip = Ibattery + Iarm + Imotor = 2250 kg ·mm2

4 Lagrangian Derivation

Our generalized coordinates are

q⃗ =

[
φ

θ

]
, and

d

dt
q⃗ = ˙⃗q =

[
φ̇

θ̇

]

We derive the kinetic and potential energy of the system first:

4.1 Kinetic Energy

T = Tp + Tw

Tp =
1

2
(Ip +mpl

2
p︸ ︷︷ ︸

Parallel Axis Theorem

)φ̇2

Tw =
1

2
mw(lwφ̇︸︷︷︸

Speed of CM

)2 +
1

2
Iw(φ̇+ θ̇︸ ︷︷ ︸

net rotation earth frame

)2

Tnet =
1

2

(
Ip +mpl

2
p + Iw +mwl

2
w

)
φ̇2 +

1

2
Iw(φ̇+ θ̇)2

=
1

2

(
Ip +mpl

2
p

)
φ̇2 +

1

2
Iw

(
φ̇2 + 2φ̇θ̇ + θ̇2

)

Tnet =
1

2
[φ̇, θ̇]

[
Ip +mpl

2
p + Iw +mwl

2
w Iw

Iw Iw

] [
φ̇

θ̇

]

This gives the form using the inertia matrix M, note the matrix is always symmetric.

54

4.2 Potential Energy

The potential energy is taken by projecting the position of the center of masses onto the vertical axis using
cos(φ), noting that the angle θ has no impact on the potential since the wheel is radially symmetric.

U = (mplp +mwlw)g cos(φ) = m0 cos(φ)

We can simplify future equations by assigning an equivalent variable m0 = (mplp +mwlw)g

This gives the complete Lagrangian

L(φ, θ, φ̇, θ̇) = KE − PE =
1

2
q̇TMq̇−m0cos(φ)

5 Equations of Motion

The Euler-Lagrange equations for each coordinate will inform the equations of motion:

0 =
∂L(q, q̇, t)

∂q
− d

dt
(
∂L(q, q̇, t)

∂q̇︸ ︷︷ ︸
Euler-Lagrange Equation

)

The non-conservative force of the torque is incorporated by having the equation not sum to zero, but
instead the sum of non-conservative forces/torques. The details of this style of derivation can be found in
Brevik (2017) Section 3.3.2.

These equations can be derived by hand, but all of the necessary information for the problem is already
encoded in the starting Lagrangian. All equations of motion that follow are merely an algorithmic process,
one that is prone to errors as well. For efficiency, it is preferable to devise a method to automatically
differentiate.

5.1 Matlab Derivation

The required files to run this code are included at https://github.com/Team-2411-RL-Unicycle/pid-control
The automated E-L solver uses a modified version of a file made by Veng (2023). It is incorporated into the
RWIPpid derivation.m file. The derivation technique is validated against the equations derived by Brevik
(2017).

The first step is to define symbolic variables for all of the parameters, states, and inputs

Listing 1: MATLAB Code

1 % Robot variables

2 syms mp lp Ip mw lw Iw real

3 params = [mp, lp, Ip, mw, lw, Iw];

4 % Define numerical values for the parameters

5 values = [.531, 0.100, 0.002250 , .346, 0.180, 0.000725];

6 g=9.81;

7 % State variables

8 syms phi theta dphi dtheta real

9 q = [phi , theta];

10 dq = [dphi , dtheta];

55

11 % Input

12 syms tau real

13

14 % Potential energy mass

15 m0 = (mp*lp + mw*lw)*g; % Effective U=mgh for combined parts

16 % Mass matrix

17 M = [(Ip + mp*lp^2 + Iw +mw*lw^2), Iw;

18 Iw, Iw];

19 lagrangian = (1/2)*([dphi , dtheta])*M*([dphi , dtheta]’) - m0 * cos(phi);

20 % Non -conservative forces in each coordinate q

21 Q = [0, tau];

The Lagrangian and its non-conservative forces are fully defined now. The equations are solved using
the modified imported library and the solution equations for each second time derivative is solved giving
d
dt q̇, these solutions can be packed into a single array to form a matrix.

Listing 2: MATLAB Code

1 % Derive the equations of motion for each ddq

2 [eqs , ddq] = EulerLagrange(q,dq,lagrangian ,Q);

3 % Explicit equations:

4 exp_eqs = ddq == eqs;

5 % Solve equations to isolate ddphi and ddtheta

6 ddqSolutions = solve(ddq == eqs , ddq);

7 % Convert solutions to cell array

8 ddqSolutionEquations = struct2cell(ddqSolutions) ;

9 ddqArray = [ddqSolutionEquations {:}]. ’;

5.2 Derived Equations of Motion

Once we have n 2nd order ODEs for n general coordinates and their n general time derivatives we have
enough to make a first order system of ODEs that characterize the system. The time-domain non-linearized
result from the derivation is given below.

d

dt
x⃗ = G⃗(x⃗, t) =




dφ
dθ

g0lpmp sin(ϕ)−τ+g0lwmw sin(ϕ)
mpl2p+mwl2w+Ip

mpτl2p−Iwg0mp sin(ϕ)lp+mwτl2w−Iwg0mw sin(ϕ)lw+Ipτ+Iwτ

Iw(mpl2p+mwl2w+Ip)



, x =




φ
θ
φ̇

θ̇




Note that there is no explicit time dependence in the function G the inverted pendulum dynamics and
rigid body characteristics are constant over time. From inspection of the solutions we see that θ, the angle
of the wheel does not play a role in the function G and can be removed entirely if desired.

These system dynamics can be used to create a time-domain non-linear simulation using Euler’s method
to get numerical solutions. Friction can be added as a damping coefficient β such that we superimpose
φ̈ = −βφ̇ onto the solution for example.

56

6 Controls Derivation

Now that the system dynamics are recovered we want to work in the Laplace domain for control. To do so,
we need to get a linearized form of this non linear vector equation. This is similar to defining a first-order
approximation to a single variable function: f(x) ≈ f(x0) + f ′(x0) · (x0 − x). In this case the linearation
happens about a vector in state-space and we use the Jacobian as the multivariate generlization of the first
derivative.

For more information on this process refer to

Berkley Designing Information Devices and Systems II University of California, Berkeley (2021)

Caltech Jacobian Linearization California Institute of Technology (2002)

6.1 Linearization

We wish to convert
G⃗(x⃗, t) ≈ Ax+Bu

via linearization about the operating point. We choose the upright position as the target and note that φ
is the only variable present in G. ˆ⃗x = 0 is the chosen linearization point:

d

dt
x⃗ ≈ ˆ⃗x+ Jacobian{G⃗(x⃗, t)}

∣∣∣
x⃗=ˆ⃗x

(x⃗− ˆ⃗x) =
(
A
)∣∣∣

x⃗=ˆ⃗x
x⃗

We perform a similar linearization to get the effect of the system inputs by taking the Jacobian with
respect to τ . The two combined give the cannonical d

dtx = Ax+Bu of controls engineering. The final step
is to take the Laplace transform of the entire equation and then solve for the transfer function between
the system inputs u or in this case τ and the observables we want (mainly the system state x) but this
generalizes to any observable that is a function of x and u

State Vector

x =



x1
x2
...




Input Vector

u =



u1
u2
...




Output Vector

y =



y1
y2
...




State Equation

ẋ =



ẋ1
ẋ2
...


 = Ax+Bu

57

Output Equation
y = Cx+Du

State Transition Matrix
Φ = (sI−A)−1

Transfer Functions
y

u
= CΦB+D

We solve for the transfer matrix y = Gu at x = 0, noting that in our case y = x

6.2 MATLAB Derivation

Listing 3: MATLAB Code

1 % State vector of the system , note that Theta is not a state variable

2 % Phi , dPhi , dTheta

3 X = [q(1)’ ; dq ’]

4 % The inputs are non -zero entries of Q (non -conservative forces)

5 U = Q(Q ~= 0);

6 % Vector functionn for the derivative of the state vector

7 dX = [dphi; ddqArray]

8

9 % Compute the Jacobian matrices to get nonlinear state matrices dX = Ax + Bu

10 A = jacobian(dX, X);

11 B = jacobian(dX, U);

12

13 % Substitute or linearize about an equilibrium point

14 % Define equilibrium point (for example , all zeros)

15 x0 = [0; 0; 0];

16 % Substitute equilibrium values x0 into A and B

17 Aeq = subs(A, X, x0)

18 Beq = subs(B, X, x0)

19

20 % U to X transfer function

21 % dX = Ax + Bu implies sX = Ax + Bu, solve for x = Gtf*u

22 syms s

23 Gtf = (s*eye(length(X)) - Aeq)^(-1)* Beq

6.3 System Transfer Function



φ(s)
φ̇(s)

θ̇(s)


 =




− 1
mpl2ps

2−g0mplp+mwl2ws2−g0mwlw+Ips2

− s
mpl2ps

2−g0mplp+mwl2ws2−g0mwlw+Ips2

mpl2p+mwl2w+Ip+Iw
Iws(mpl2p+mwl2w+Ip)

+
g0lpmp+g0lwmw

s(mpl2p+mwl2w+Ip)(mpl2ps
2−g0mplp+mwl2ws2−g0mwlw+Ips2)


 τ(s)

We note that for our control problem we are trying to control the angle φ using torque, so the function
of interest is the upper row equation:

φ(s) =
(
− 1

mpl2ps
2 − g0mplp +mwl2ws

2 − g0mwlw + Ips2

)
τ(s)

58

Or rearranging we see that we have function of the form 1
s2+a2

:

φ(s) =

(
− 1

s2(mpl2p +mwl2w + Ip)−m0

)
τ(s)

This is a function with one pole in the RH plane making it unstable.

7 Controls Policy

There are actually two objectives that are necessary to keep the pendulum balanced upright.

1. The angle φ should be minimized to 0 degrees where possible.

2. The wheel velocity can not exceed the maximum for the motor configuration.

The wheel velocity in a balancing configuration can be controlled by biasing which side of the unstable
equilibrium the pendulum is on. With a functioning and responsive control for φ, commanding the robot
to hold position on one side of the equilibrium will cause a build-up of torque in one direction. This can be
used to apply torque opposite to the direction of the spinning wheel to slow it down.

Figure 2: Control Flow Diagram

We read the wheel speed from the wheel encoder and get an error for how far off from zero velocity it
is. This is fed through to a PI controller that updates the setpoint objective for the pendulum angle to
counteract the velocity. This request is sent to a PD controller which functions off the error between the
requested φ and the current φ as read by the the sensors. Finally this torque request is passed to the motor
driver which has a high frequency feedback loop to apply the requested torque.

7.1 PD Controller for Pendulum Angle

The PD Controller for φ is tuned using the assumption that the torque requests have little delay before
reaching the intended value. This is because the motor controller is running at 100 times faster than the

59

main control loop frequency of 100Hz. Thus we model the feedback loop of Controller -¿ G(s) -¿ H(s) Sensor
Fusion. The sensor fusion and torque request mechanism are modeled as a delay of one 100Hz control cycle.

A PD controller is selected because of the dynamic setpoint that is being controlled by the cascade
arrangement. If we were to include an I term then the controller would not be memoryless and would have
undesirable response characteristics to the dynamic φ setpoint being requested by the higher level controller.
The PD control model is a robust choice for a controller for this robot state parameter, Brevik (2017).

The MATLAB pid tuner is used to get feasible starting values based on this loop. The experimental
parameters applied to the robot were found to closely match the predicted values.

7.2 PI Controller for Wheel Velocity

The PI controller is tuned heuristically once a good underlying PD controller for the angle is found. A
starting value of around Kp = 0.1 was found to be helpful. Blending of integral term with a corresponding
reduction of P is one approach to further tuning.

References

Brevik, P. (2017). Two-axis reaction wheel inverted pendulum (Master’s thesis, Norwegian University
of Science and Technology). Retrieved from https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/

handle/11250/2451060/12762 FULLTEXT.pdf?sequence=1 (Supervisor: Tor Engebret Onshus)
California Institute of Technology. (2002). Jacobian linearization. CDS Caltech. Retrieved from https://

www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/pph02-ch19-23.pdf (Accessed:
2024-04-06)

Montoya, O. D., & Gil-González, W. (2020). Nonlinear analysis and control of a reaction wheel pendulum:
Lyapunov-based approach. Engineering Science and Technology, an International Journal , 23 (1), 21–
29. Retrieved from https://doi.org/10.1016/j.jestch.2019.03.004 doi: 10.1016/j.jestch.2019
.03.004

University of California, Berkeley. (2021). Designing information devices and systems ii. EECS Berkeley. Re-
trieved from https://inst.eecs.berkeley.edu/~ee16b/sp21/notes/sp21/note15.pdf (Accessed:
2024-04-06)

Veng, M. (2023). Euler-Lagrange Solver. MATLAB Central File Exchange. Retrieved 2023-
10-23, from https://www.mathworks.com/matlabcentral/fileexchange/93275-euler-lagrange

-solver (Available online: https://www.mathworks.com/matlabcentral/fileexchange/93275

-euler-lagrange-solver)

60

	Introduction
	Background
	Previous Work
	Requirements

	System Overview
	Project Development Overview
	Robot Design
	System Dynamics Overview
	System Dynamics Design Motivation
	Hardware Design
	Self-Righting Capabilities
	Powering The System
	Actuators
	Motors
	Moteus Drivers
	Flywheel

	Computer and Software Systems
	Actuator Control Interface
	Inertial Measurement Unit
	Server and Telemetry

	Software Architecture
	Control Algorithms
	Classical Controls
	RL Controls
	RWIP Reinforcement Learning Control

	Current Progress
	Conclusions
	Future Development and Recommendations
	Deliverables
	Appendix A
	Appendix B
	Appendix C
	Appendix D

